哈夫曼树

1. 哈夫曼树的定义

带权路径长度(WPL):设二叉树有 n 个叶子节点,每个叶子结点带有权值 wkw_k ,从根节点到每个叶子结点的长度为 IkI_k ,则每个叶子结点的带权路径长度之和为: WPL=k=1nwkIkWPL = \sum^n_{k=1}w_kI_k

最优二叉树哈夫曼树WPL 最小的二叉树

2. 哈夫曼树的构造

每次把 权值最小的两棵 二叉树合并

class HuffmanNode {
    int data;
    int weight;
    HuffmanNode left;
    HuffmanNode right;

    public HuffmanNode(int weight) {
        this.weight = weight;
    }
}

public class HuffmanTree {

    public HuffmanNode huffman(HuffmanNode[] nodes) {
        PriorityQueue<HuffmanNode> minHeap = new PriorityQueue<>(Comparator.comparingInt(o -> o.weight));

        minHeap.addAll(Arrays.asList(nodes));

        while (minHeap.size() > 1) {
            HuffmanNode root = new HuffmanNode(0);
            root.left = minHeap.poll();
            root.right = minHeap.poll();
            assert root.right != null;
            root.weight = root.left.weight + root.right.weight;
            minHeap.add(root);
        }
        return minHeap.poll();
    }

    // A utility function to print preorder traversal
    // of the tree.
    // The function also prints height of every node
    public void preOrder(HuffmanNode node) {
        if (node != null) {
            System.out.print(node.weight + " ");
            preOrder(node.left);
            preOrder(node.right);
        }
    }

    @Test
    public void test() {
        HuffmanNode[] huffmanNodes = new HuffmanNode[5];
        for (int i = 0; i < 5; i++) {
            huffmanNodes[i] = new HuffmanNode( i + 1);
        }
        HuffmanNode root = huffman(huffmanNodes);
        preOrder(root);
    }

}

3. 哈夫曼树的特点

  • 没有度为 1 的结点

  • n 个叶子结点的哈夫曼树共有 2n-1 个结点(可通过公式证明:边数 = 度数)

  • 哈夫曼树的任意非叶结点的 左右子树交换 后仍是哈夫曼树

  • 对同一组权值 {w1,w2,,wn}\{ w_1, w_2, \cdots , w_n \} ,存在不同构的两棵哈夫曼树

4. 哈夫曼编码

根据出现的频率,构造哈夫曼树,这样所需的代价最小

最后更新于

这有帮助吗?