哈夫曼树
1. 哈夫曼树的定义
带权路径长度(WPL):设二叉树有 n 个叶子节点,每个叶子结点带有权值 ,从根节点到每个叶子结点的长度为 ,则每个叶子结点的带权路径长度之和为:
最优二叉树 或 哈夫曼树:WPL 最小的二叉树
2. 哈夫曼树的构造
每次把 权值最小的两棵 二叉树合并
class HuffmanNode {
    int data;
    int weight;
    HuffmanNode left;
    HuffmanNode right;
    public HuffmanNode(int weight) {
        this.weight = weight;
    }
}
public class HuffmanTree {
    public HuffmanNode huffman(HuffmanNode[] nodes) {
        PriorityQueue<HuffmanNode> minHeap = new PriorityQueue<>(Comparator.comparingInt(o -> o.weight));
        minHeap.addAll(Arrays.asList(nodes));
        while (minHeap.size() > 1) {
            HuffmanNode root = new HuffmanNode(0);
            root.left = minHeap.poll();
            root.right = minHeap.poll();
            assert root.right != null;
            root.weight = root.left.weight + root.right.weight;
            minHeap.add(root);
        }
        return minHeap.poll();
    }
    // A utility function to print preorder traversal
    // of the tree.
    // The function also prints height of every node
    public void preOrder(HuffmanNode node) {
        if (node != null) {
            System.out.print(node.weight + " ");
            preOrder(node.left);
            preOrder(node.right);
        }
    }
    @Test
    public void test() {
        HuffmanNode[] huffmanNodes = new HuffmanNode[5];
        for (int i = 0; i < 5; i++) {
            huffmanNodes[i] = new HuffmanNode( i + 1);
        }
        HuffmanNode root = huffman(huffmanNodes);
        preOrder(root);
    }
}3. 哈夫曼树的特点
- 没有度为 1 的结点 
- n 个叶子结点的哈夫曼树共有 2n-1 个结点(可通过公式证明:边数 = 度数) 
- 哈夫曼树的任意非叶结点的 左右子树交换 后仍是哈夫曼树 
- 对同一组权值 ,存在不同构的两棵哈夫曼树 
4. 哈夫曼编码
根据出现的频率,构造哈夫曼树,这样所需的代价最小

最后更新于
这有帮助吗?